Schwingung einer gespannten Saite mit fixierten Endpunkten
(Waves on a stretched string with fixed ends)
| > | restart:with(plots): |
Warning, the name changecoords has been redefined
Solution of wave equation:
| > | l := 1; c:=1; |
Spatial solution
| > | X[n](x):= sin(n*Pi/l*x);X[m](x):=subs(n=m,X[n](x)): |
Time-dependent solution
| > | T[n](t):= (A(n)*cos(n*Pi*c/l*t)+B(n)*sin(n*Pi*c/l*t));u[n](x,t):=T[n](t)*X[n](x): |
Eigenfunction expansion
| > | u(x,t):=Sum(u[n](x,t),n=1..infinity); |
Initial conditions
| > | u0(x):=x*(1-x); |
| > | v(x):=x*(1-x); |
Plot of u0:
| > | plot(u0(x) , x=0..l ,thickness=5); |
Evaluation of coefficients for specific ICs
| > | A(n):=(2/l)*Int(u0(x)*X[n](x) ,x=0..l);A(n):=expand(value(%)): |
| > | A(n):=simplify(subs({sin(n*Pi)=0,cos(n*Pi)=(-1)^n},A(n))); |
| > | B(n):=(2/(n*Pi*c))*Int( v(x)*X[n](x),x=0...l);B(n):=expand(value(%)): |
| > | B(n):=radsimp(subs({sin(n*Pi)=0,cos(n*Pi)=(-1)^n},%)); |
(Observe convergence of series.)
| > | u[n](x,t):=eval(T[n](t)*X[n](x)): |
Series solution
| > | u(x,t):=Sum(u[n](x,t),n=1..infinity); |
![(Typesetting:-mprintslash)([u(x, t) := Sum((4*(1+(-1)^(1+n))*cos(n*Pi*t)/(n^3*Pi^3)-4*(-1+(-1)^n)*sin(n*Pi*t)/(n^4*Pi^4))*sin(n*Pi*x), n = 1 .. infinity)], [Sum((4*(1+(-1)^(1+n))*cos(n*Pi*t)/(n^3*Pi^3...](pde_wave/pde_wave_13.gif)
First few terms of sum
| > | u(x,t):=sum(u[n](x,t),n=1..5); |
![]()
Animation
| > | animate(u(x,t),x=0...l,t=0..20,color=red,thickness=5 , frames=600 ); |